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Image Restoration using a Nonlinear
Second-order Parabolic PDE-based Scheme

Tudor Barbu and Costică Moroşanu

Abstract

A novel anisotropic diffusion-based image denoising and restoration
approach is proposed in this paper. A variational model for image
restoration is introduced first, then the corresponding Euler-Lagrange
equation being determined. A nonlinear parabolic PDE model is then
obtained from this equation. It is based on a novel edge-stopping func-
tion and conductance parameter. A serious mathematical treatment is
performed on this second-order anisotropic diffusion scheme, its well-
possedness being investigated. Then, a consistent explicit numerical ap-
proximation scheme based on the finite difference method is developed
for the proposed PDE model.

1 Introduction

Because of their feature-preserving advantage, the nonlinear second-order dif-
fusion based techniques represent the most effective image enhancement tool
[1]. They have been widely used in the image denoising and restoration domain
since 1987, when the influential anisotropic diffusion algorithm of Perona and
Malik was introduced [2]. Numerous anisotropic diffusion models for image de-
noising derived from Perona-Malik scheme have been proposed since then [3].
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Also, since it is common to obtain PDE (partial differential equation) models
from variational schemes, many variational restoration approaches have been
also developed in the last 25 years [1,3]. The most influential one is the Total
Variation (TV) Denoising proposed by Rudin, Osher and Fetami in 1992 [4].

Because the conventional two-dimension filters and most linear PDE-based
smoothing methods suffer from blurring effect that destroys the edges and
other important image details, and also do not have the localization prop-
erty, the detail-preserving restoration still constitutes a serious challenge for
the image processing researchers. Although the nonlinear second-order PDE
overcome these drawbacks of the classic 2D filters, avoiding the image blur-
ring, preserving the edges very well and having the localization property, they
are often affected by another undesired effect, namely the staircase, or blocky,
effect [5].

Many second-order nonlinear diffusion based restoration techniques that
reduce this effect has been proposed in the last years. We could mention
here several improved versions of the Perona-Malik algorithm and TV denois-
ing, such as the Weickert diffusion [3], Adaptive TV denoising [6], anisotropic
HDTV regularizer [7] and TV Denoising with Split Bregman [8]. We also
developed such nonlinear second-order PDE and variational denosing models
that overcome the staircasing and other unintended effects, in our previous
papers [9-12]. A more effective second-order nonlinear anisotropic diffusion-
based feature-preserving restoration technique is provided in this article. It
provides a satisfactory image noise removal while reducing considerably the
blurring and staircase effects.

Our PDE variational model for image restoration is described in the next
section. A nonlinear diffusion scheme is obtained from the variational problem
by applying the corresponding Euler-Lagrange equation. Then, a mathemati-
cal treatment of the proposed denoising model, investigating its well-posedness
and the selection of the edge-stopping function, is provided in the third sec-
tion. A consistent numerical approximation scheme developed for this model
is described in the fourth section, while the image restoration experiments
performed by using this filtering technique are discussed in the fifth section.
The article ends with a conclusions section and a list of references.

2 NovelAnisotropicDiffusionModel forImageRestoration

A new effective PDE-based denoising and restoration technique is described
in this section. As we have already mentioned, it is intended to optimize the
trade-off between the image filtering, detail preservation and unintended effect
removal.

First, we consider the following variational problem [13] that minimizes an
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energy cost functional:
uoptim = arg min

u
E(u), (1)

where the result uoptim would represent the enhanced (restored) image and

E(u) =

∫
Ω

(
λ

2
ψu(‖∇u‖) +

ρ

2
(u− u0)2

)
dΩ, (2)

where the image domain Ω ⊆ R2, the parameters λ, ρ ∈ (0, 1) and u0 is the
initial image, affected by Gaussian noise. The regularizer function of this
energy functional has the following form:

ψu(s) =

s∫
0

τζ

(
γ(u)

β ln(s+ γ(u))3 + δ

)1/2

dτ, (3)

its conductance parameter being modeled as a function of some statistics of
the evolving image, as following:

γ(u) = α · µ(‖∇u‖) + η · pos(u), (4)

where α, β, ζ, η, δ ∈ (0, 3], µ returns the average value and pos (u) gets the
position of u in the evolving sequence.

Let us denote L(x, y, u, ux, uy) = λψu(‖∇u‖)+ρ(u−u0)2

2 , where ux = ∂u/∂x,
then determine the Euler-Lagrange equation corresponding to the proposed
variational scheme [13]. The respective equation is obtained as:

∂L

∂u
− ∂

∂x

∂L

∂ux
− ∂

∂y

∂L

∂uy
= 0 (5)

that leads to

ρ(u− u0)− ∂

∂x

(
λ

2
ψ′u(‖∇u‖) 2ux

‖∇u‖

)
− ∂

∂y

(
λ

2
ψ′u(‖∇u‖) 2uy

‖∇u‖

)
= 0 (6)

which is equivalent to

ρ(u− u0)− λ div

(
ψ′u(‖∇u‖)
‖∇u‖

∇u
)

= 0. (7)

If we note ξu(s) = ψ′(s)
s , then (7) becomes:

ρ(u− u0)− λ div (ξu(‖∇u‖)∇u) = 0. (8)



IMAGE RESTORATION 36

One then applies the steepest descent method [13] on this PDE and, by ap-
plying some boundary conditions, obtains the following nonlinear anisotropic
diffusion model:

∂u

∂t
= λ div (ξu(‖∇u‖)∇u)− ρ · (u− u0)

u(0, x, y) = u0

u(t, x, y) = 0, ∀t ≥ 0, (x, y) ∈ ∂Ω

, (x, y) ∈ Ω. (9)

Obviously, the edge-stopping (diffusivity) function of this parabolic PDE-
based denoising scheme is ξu : [0,∞) → (0,∞), which is determined, from
equation (3), as following:

ξu(s) =
ψ′u(s)

s
= ζ

√
γ(u)

β ln(s+ γ(u))3 + δ
. (10)

The minimization result given by (1), which represents the restored image,
is then computed by solving the PDE (9). The existence and uniqueness of
the solution of this parabolic diffusion-based model are discussed in the next
section, where a mathematical treatment is performed for it.

3 A Mathematical Treatment of the PDE-based Model

In this section we perform a mathematical investigation of the proposed vari-
ational PDE model. Thus, the obtained diffusivity (edge-stopping) function
is analyzed first, then the well-posedness of the anisotropic diffusion model.

So, the function ξu is always positive, because ψu(s) > 0, ∀s ≥ 0. Also, it
represents a monotonically decreasing function, because ∀ s1 ≤ s2,

ξu(s1) = ζ

√
γ(u)

β ln(s+ γ(u))3 + δ
≥ ζ

√
γ(u)

β ln(s+ γ(u))3 + δ
= ξu(s2). (11)

This edge-stopping function is also convergent to zero, since we have:

lim
s→∞

ξu(s) = lim
s→∞

ζ
√

γ(u)
β ln(s+γ(u))3+δ = 0. Because it satisfies these conditions,

the edge-stopping function ξu is appropriate for an effective denoising.
In the following we will describe the framework of our problem (9), namely,

on a bounded domain Ω ⊂ R2, with a C2 boundary ∂Ω and for a finite time
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T > 0, we consider the following second boundary value problem

∂

∂t
u(t, x1, x2) = λ div (ξu(‖∇u‖)∇u)

−ρ(u(t, x1, x2)− u0(x1, x2)) + f(t, x1, x2) in Q = (0, T ]× Ω

λξu(‖∇u‖) ∂
∂ν
u(t, x1, x2) = 0 on Σ = (0, T ]× ∂Ω

u(0, x1, x2) = u0(x1, x2) ∈W 2− 2
p

∞ (Ω) on Ω,

(12)

where λ, ρ are positive constants, ξu0(‖∇u0‖) ∂
∂νu0(x1, x2) = 0 and p ≥ 2.

Basic tools in our approach are the Leray-Schauder degree theory and the
Lp-theory of linear and quasi-linear parabolic equations [14]. In the following,
for a given positive integer k and 1 ≤ p ≤ ∞, W k,2k

p (Q) denote the Sobolev
space on Q:

W k,2k
p (Q) =

{
y ∈ Lp(Q) :

∂r

∂tr
∂q

∂xq
y ∈ Lp(Q), for 2r + q ≤ k

}
,

i.e., the spaces of functions whose t-derivatives and x-derivatives up to the
order k and 2k, respectively, belong to Lp(Q) (see [14, p. 5]).

Also, we shall use the set C1,2(Q̄) (C1,2(Q)) of all continuous functions in
Q̄ (in Q) having continuous derivatives ut, ux, uxx in Q̄ (in Q), as well as the

Sobolev spaces W
2−2/p
∞ (Ω), W

l,l/2
p (Σ) with non integral l for the initial and

boundary conditions, respectively (see [14, p. 8, p. 70 and p. 81]).

Definition 1. The function u(t, x), x = (x1, x2) is a classical solution of the
second boundary value problem (12) if it is continuous in Q̄, have continuous
derivatives ut, ux, uxx in Q, satisfy the equation (12)1 at all points (t, x) ∈ Q
and satisfy conditions (12)2 and (12)3 for (t, x) ∈ Σ and t = 0, respectively.

For convenience, we will write problem (12) in the equivalent form

∂

∂t
u(t, x1, x2)− λ ∂

∂uxj
(ξu(‖∇u‖)uxi)uxjxi

+A(t, x1, x2, u, uxi) = ρu0(x1, x2) + f(t, x1, x2) in Q

λξu(‖∇u‖) ∂
∂ν
u(t, x1, x2) = 0 on Σ

u(0, x1, x2) = u0(x1, x2) on Ω,

(13)

with

A(t, x1, x2, u, uxi) = −λ ∂

∂u
(ξu(‖∇u‖)uxi)uxi

−λ ∂

∂xi
(ξu(‖∇u‖)uxi) + ρu(t, x1, x2)
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and

uxi =
∂

∂xi
u(t, x1, x2), uxjxi =

∂2

∂xj∂xi
u(t, x1, x2), i, j = 1, 2.

In the present work we will investigate the solvability of the second bound-
ary value problems of the form (13) in the class W 1,2

p (Q). Thereat our main
result in studying the existence and regularity of solution in problem (13) is
the following

Theorem 1. Suppose u(t, x1, x2) ∈ C1,2(Q) is a classical solution of equation
(13) satisfying λξu(‖∇u‖) ∂

∂νu(t, x1, x2) = 0 on the lateral surface Σ of the
cylinder Q and that the following conditions hold

I1. For (t, x1, x2) ∈ Q, |u(t, x1, x2)| < M , M > 0, and arbitrary p the function
ξu(‖∇u‖)p are continuous, differentiable with respect to x = (x1, x2), u and p
and satisfies the inequalities (ξ = (ξ1, · · · , ξn) an arbitrary real vector)

νξ2 ≤ ∂

∂pj
(ξu(‖∇u‖)p)ξiξj ≤ µξ2, ν > 0; (14)

[
|ξu(‖∇u‖)uxi |+

∣∣∣∣ ∂∂u (ξu(‖∇u‖)uxi)
∣∣∣∣] (1 + |p|)

+

∣∣∣∣ ∂∂x1
(ξu(‖∇u‖)ux1

)

∣∣∣∣+

∣∣∣∣ ∂∂x2
(ξu(‖∇u‖)ux1

)

∣∣∣∣ (15)

+

∣∣∣∣ ∂∂x1
(ξu(‖∇u‖)ux2

)

∣∣∣∣+

∣∣∣∣ ∂∂x2
(ξu(‖∇u‖))ux2

∣∣∣∣+ |u(t, x1, x2)| ≤ µ(1 + |p|)2;

I2. ‖ξu(‖∇u‖)uxi‖Lr(Q)
< M1, i = 1, 2, ‖u‖

Ls(Q)
≤M2, M1,M2 > 0,

with

r =

{
max{p, 4} p 6= 4

4 + ε p = 4,
; s =

{
max{p, 2} p 6= 2

2 + ε p = 2,

and ε being an arbitrarily small positive number.

Then, for any f ∈ Lp(Q) and u0 ∈W
2− 2

p
∞ (Ω), with p 6= 3

2 , problem (13) has a
solution u ∈W 1,2

p (Q) and satisfies the estimate

‖u‖W 1,2
p (Q) ≤ C

(
‖u0‖

W
2− 2

p
∞ (Ω)

+ ‖f‖Lp(Q)

)
, (16)

where the constant C > 0 is independent of u and f .
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Proof. In order to prove the results on problem (13), we will apply the
Leraly-Schauder principle. In this line, we will choose as suitable Banach
space B = W 0,1

p (Q), endowed with the norm

‖v‖B = ‖v‖Lp(Q) + ‖vx‖Lp(Q) (17)

and we introduce the nonlinear operator

u = u(v, τ) = Φ(v, τ), ∀(v, τ) ∈W 0,1
p (Q)× [0, 1], (18)

where u(v, τ) is the unique solution to the following linear boundary value
problem

∂

∂t
u(t, x1, x2)− λ

[
τ

∂

∂vxj
(ξv(‖∇u‖)vxi) + (1− τ)δji

]
uxixj

= −τ [A(t, x1, x2, v, vxi)− ρu0(x1, x2) + f(t, x1, x2)] in Q

λξv(‖∇u‖)
∂

∂ν
u(t, x1, x2) = 0 on Σ

u(0, x1, x2) = τu0(x1, x2), on Ω.

(19)

The nonlinear operator Φ in (18) depends on τ ∈ [0, 1] and its fixed point for
τ = 1 are solutions of problem (13).

Φ is well-defined (problem (19) has a solution). From the right-hand side
of (19), it follows that ∀v ∈ W 0,1

p (Q), then A(t, x1, x2, v, vxi) + f(t, x1, x2) ∈
Lp(Q). Using Lp-theory of linear parabolic equations (see [14, p. 341-342]),
the solution u to problem (19) exists and is unique with

u = u(v, τ) ∈W 1,2
p (Q), ∀v ∈W 0,1

p (Q), ∀τ ∈ [0, 1]. (20)

We have the continuous inclusions (see [15, p. 24])

W 1,2
p (Q) ⊂W 0,1

p (Q), (21)

which means that Φ(v, τ) = u ∈W 0,1
p (Q) for all v ∈W 0,1

p (Q) and ∀τ ∈ [0, 1].

Φ is continuous and compact. Let vn → v in W 0,1
p (Q) and τn → τ in [0, 1].

Denote
un,τn = Φ(vn, τn), un,τ = Φ(vn, τ) and uτ = Φ(v, τ).
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Then Φ(vn, τn)− Φ(vn, τ) gives (see (18) and (19))

∂

∂t
(un,τn−un,τ)−λ

[
τ

∂

∂vnxj
(ξvn(‖∇vn‖)vnxi)+(1−τ)δji

]
(un,τnxixj−u

n,τ
xixj)

=−(τn−τ)

{
λ

[
∂

∂vnxj
(ξvn(‖∇vn‖)vnxi)−δ

j
i

]
un,τnxixj

+A(t, x, vn, vnxi)− ρu0(x1, x2) + f(t, x1, x2)
}

in Q

λξvn(‖∇u‖) ∂
∂ν

(un,τn − un,τ ) = 0 on Σ

(un,τn − un,τ )(0, x1, x2) = (τn − τ)u0(x1, x2) in Ω.

(22)

Owing that un,τn ∈ W 1,2
p (Q), the right-hand side of (22) belongs to Lp(Q).

Thus we may apply Lp-theory to problem (22) which gives the estimate

‖un,τn − un,τ‖W 1,2
p (Q) ≤ C|τn−τ |

∥∥∥∥∥
(

∂

∂vnxj
(ξvn(‖∇vn‖)vnxi)−δ

j
i

)
un,τnxixj

∥∥∥∥∥
Lp(Q)

+‖A(t, x, vn, vnxi)‖Lp(Q) + ‖u0‖
W

2− 2
p

∞ (Ω)
+ ‖f‖Lp(Q)

]
,

for a constant C(|Ω|, p, λ, ρ, µ,M,M1). By virtue of (15) and I2 and, knowing
that un,τnxixj ∈ L

p(Q), we derive the boundedness of the terms A(t, x, vn, vnxi),(
∂

∂vnxj
(ξvn(‖∇vn‖)vnxi) − δ

j
i

)
un,τnxixj , u0 and f in Lp(Q). Thus, in view of the

convergence τn → τ , from the above inequality we get

‖un,τn − un,τ‖W 1,2
p (Q) → 0 for n→∞. (23)

From (18) and (19) we also obtain: Φ(vn, τ)− Φ(v, τ)

∂

∂t
(un,τ−uτ )−λ

[
τ

∂

∂vnxj
(ξvn(‖∇vn‖)vnxi)+(1−τ)δji

]
(un,τxτxj−u

τ
xixj )

=−τ

[
λ

∂

∂vnxj
(ξvn(‖∇vn‖)vnxi)−λ

∂

∂vxj
(ξv(‖∇v‖)vxi)

]
uτxixj

−τ [A(t, x, vn, vnxi −A(t, x, v, vxi)] in Q

λξvn(‖∇vn‖) ∂
∂ν (un,τ − uτ ) = 0 on Σ

(un,τ − uτ )(0, x1, x2) = 0 on Ω.

(24)
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The Lp-theory applied to problem (24) gives us the estimate

‖un,τ − uτ‖W 1,2
p (Q)

≤ C

∥∥∥∥∥λ
(

∂

∂vnxj
(ξvn(‖∇vn‖)vnxi)−

∂

∂vxj
(ξv(‖∇v‖)vxi)

)
uτxixj

∥∥∥∥∥
Lp(Q)

+‖A(t, x, vn, vnxi)−A(t, x, v, vxi)‖Lp(Q)

]
,

for a positive constant C. The boundedness of the terms in right-hand side of
above inequality and the convergence vn → v in W 0,1

p (Q) allow us to conclude
that

‖un,τ − uτ‖W 1,2
p (Q) → 0 as n→∞. (25)

Making use of relations (23) and (25) we derive the continuity of the non-
linear operator Φ defined in (18). Moreover, writing Φ as the composition

W 0,1
p (Q)× [0, 1]→W 1,2

p (Q) ↪→W 0,1
p (Q),

the compactness of Φ immediately follows.

The regularity of the solutions. Now, we will establish the existence of a
number δ > 0 such that

(u, τ) ∈W 0,1
p (Q)× [0, 1] with u = Φ(u, τ)⇒ ‖u‖B < δ. (26)

The equality u = Φ(u, τ) in relation (26) is equivalent to

∂

∂t
u(t, x1, x2)− λ

[
τ

∂

∂uxj
(ξu(‖∇u‖)uxi) + (1− τ)δji

]
uxixj

= −τ [A(t, x1, x2, u, uxi)− ρu0(x1, x2) + f(y, x1, x2)] in Q

λξu(‖∇u‖) ∂
∂ν
u(t, x1, x2) = 0 on Σ

u(0, x1, x2) = τu0(x1, x2) on Ω.

(27)

Applying Lp-theory to problem (27) and using the assumptions expressed
in (15) and I2, we deduce that

‖u‖W 1,2
p (Q) ≤ C

(
‖u0‖

W
2− 2

p
∞ (Ω)

+ ‖f‖Lp(Q)

)
, (28)

for a constant C(|Ω|, p, λ, µ, ν, ρ,M1,M2) > 0 with p 6= 3
2 . The continuous

embedding W 1,2
p (Q) ⊂W 0,1

p (Q) together with above inequality ensures that

‖u‖W 0,1
p (Q) ≤ C‖u‖W 1,2

p (Q),
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which means that the claim in (26) holds true.
Denoting

Bδ := {u ∈ B : ‖u‖B < δ}, (29)

relation (26) implies that Φ(u, τ) 6= u, ∀u ∈ ∂Bδ, ∀τ ∈ [0, 1], provided that
δ > 0 is sufficiently large. Furthermore, following the same reasoning as in
[16], we conclude that the problem (13) has a solution u ∈W 1,2

p (Q). Estimate
(28) permit as to conclude that (16) is valid.

4 Robust Numerical Approximation Approach

Now we must approximate the weak solution of the second-order parabolic
PDE, whose existence has been proved in the preview section. Thus, the
proposed nonlinear diffusion model is discretized by using the finite-difference
method [17]. A consistent numerical approximation scheme is developed for
this continuous model.

So, we consider a space grid size of h and a time step ∆t. The space and
time coordinates are quantized as following:

x = ih, y = jh, t = n∆t, ∀i ∈ {0, .., I}, j ∈ {0, ., J}, n ∈ {0, .., N}. (30)

Since we have the following relation:

div (ξu(‖∇u‖)∇u) = ξu(‖∇u‖)∆u+∇(ξu(‖∇u‖)) · ∇u, (31)

we perform a finite difference-based discretization for each component of this
sum. So, the first part of this sum is approximated by using the discrete Lapla-
cian operator. Thus, we compute ξni,j = ξu(‖∇uni,j‖)∆uni,j for n ∈ {0, .., N},
where

∆uni,j=
un(i+ h, j)+un(i− h, j)+un(i, j + h)+un(i, j − h)−4un(i, j)

h2
(32)

and

ξu(‖∇uni,j‖) = ξu

√ (uni+h,j − uni−h,j)2

4h2
+

(uni,j+h − uni,j−h)2

4h2

 (33)

is computed by using (10).
The second part of the sum is computed as following:

∇(ξu(‖∇u‖)) · ∇u (34)

=

(
∂

∂x
ξu

(√
(
∂u

∂x
)2 + (

∂u

∂y
)2

)
,
∂

∂y
ξu

(√
(
∂u

∂x
)2 + (

∂u

∂y
)2

))(
∂u

∂x
,
∂u

∂y

)
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that leads to

∇(ξu(‖∇u‖)) · ∇u=
∂ξu
∂s

(‖∇u‖)
(∂u∂x )2 ∂2u

∂x2+
∂u
∂x

∂u
∂y

∂2u
∂x∂y+(∂u∂y )2 ∂2u

∂y2+∂u
∂x

∂u
∂y

∂2u
∂x∂y√

(∂u∂x )2 + (∂u∂y )2
.

(35)
We could perform some approximations in (35). Since the second order

derivatives do not vary too much, the next approximation is performed:

∇(ξu(‖∇u‖)) · ∇u ≈ ∂ξu
∂s

(‖∇u‖)
∂2u
∂x∂y (∂u∂x + ∂u

∂y )2√
(∂u∂x )2+(∂u∂y )2

≈ ξ′u(
√
u2
x+u2

y)uxy(ux+uy),

where ux = ∂u/∂x, uy = ∂u/∂y and uxy = ∂2u/∂x∂y are discretized by
applying the finite difference method [17].

Therefore ξ′u(
√
u2
x + u2

y)uxy(ux + uy) gets the discretization

ξ′u

√ (uni+h,j−uni−h,j)2

4h2
+

(uni,j+h−uni,j−h)2

4h2

 (36)

·
(uni+h,j+h−uni+h,j−h−uni−h,j+h+uni−h,j−h)(uni+h,j−uni−h,j+uni,j+h−uni,j−h)

8h3
,

where uni,j = un(i, j).
Then, one applies the obtained discretization of div (ξu(‖∇u‖)∇u) and

the finite-difference method on the PDE in (9) and gets the following implicit
approximation:

un+∆t
i,j − uni,j

∆t
= λξu

√ (uni+h,j − uni−h,j)2

4h2
+

(uni,j+h − uni,j−h)2

4h2


·
uni+h,j + uni−h,j + uni,j+h + uni,j−h − 4uni,j

h2
(37)

+ λξ′u

√ (uni+h,j − uni−h,j)2

4h2
+

(uni,j+h − uni,j−h)2

4h2


·

(uni+h,j+h−uni+h,j−h−uni−h,j+h+uni−h,j−h)(uni+h,j−uni−h,j+uni,j+h−uni,j−h)

8h3

− ρ(uni,j − u0
i,j).

If one consider h = 1 and ∆t = 1, the above discretization is transformed
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into the next explicit numerical approximation scheme:

un+1
i,j = uni,j(1− ρ) + λξu


√

(uni+1,j − uni−1,j)
2 + (uni,j+1 − uni,j−1)2

2


· (uni+1,j + uni−1,j + uni,j+1 + uni,j−1 − 4uni,j) (38)

+ λξ′u


√

(uni+1,j − uni−1,j)
2 + (uni,j+1 − uni,j−1)2

2


·

(uni+1,j+1−uni+1,j−1−uni−1,j+1+u
n
i−1,j−1)(uni+1,j−uni−1,j+u

n
i,j+1−uni,j−1)

8

+ ρu0
i,j .

The iterative approximation algorithm provided by (18) is applied on the
evolving image, for each n ∈ {0, ..., N}, starting with u0 = u0, which repre-
sents the initial noisy [I×J ] image. The developed explicit numerical approx-
imation scheme is consistent to the nonlinear second-order PDE model given
by (1). This scheme converges fast to the approximation of its unique and
weak solution, representing the optimal restoration, uN+1, since the number
of iterations, N, takes low values.

5 Experiments and Method Comparison

The nonlinear second-order diffusion-based filtering technique proposed here
has been tested on hundreds images affected by Gaussian noise, satisfactory
restoration results being achieved. We used some well-known digital image
collections for our denoising experiments, such as the Volumes of the USC-SIPI
database, by corrupting their original images with various amounts of Gaussian
noise and then applying the iterative denoising algorithm on them. We have
determined on a trial and error basis the following values of parameters that
provide an optimal smoothing: λ = 1.2, ρ = 0.3, η = 0.2, β = 0.7, α = 1.3,
δ = 4, ζ = 0.5, N = 12.

The performed denoising tests show that our PDE-based scheme reduces
considerably the noise, while preserving the image boundaries and other im-
portant features. Also, it avoids unintended effects, such as image blurring,
blocky effect [5] or speckle noise, and executes quite fast, having a running
time of less than 1 s.

Method comparison have been also performed. The performance of this
PDE filtering approach has been assessed by using some well-known perfor-
mance measures, such as Peak Signal-to-Noise Ratio (PSNR), Norm of the
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Error (NE) measure and the Structural Similarity Image Metric (SSIM) [18].
The PSNR values provided by our technique and other filtering approaches
are displayed in Table 1. One can see that our second-order diffusion-based
scheme gets higher PSNR values than other image restoration models.

It outperforms the conventional two-dimension image filters, such as Aver-
age, Gaussian, Wiener and Median filters, since it overcomes the image blur-
ring and preserves the edges. Also, it outperforms some influential nonlinear
diffusion schemes, such as both versions of the Perona-Malik anisotropic diffu-
sion model and its derived methods [2], and the variational TV Denoising [4].
Unlike these second-order PDE-based approaches, it alleviates the staircase
effect and also converges much faster.

Table 1. PSNR values achieved by various denoising techniques

Restoration approach PSNR

This 2nd-order PDE scheme 27.33 (dB)

Average Filter 25.63 (dB)

Gaussian 2D 25.47 (dB)

Median Filter 26.48 (dB)

Perona-Malik 1 26.85 (dB)

Perona-Malik 2 26.81 (dB)

Tv Denoising 27.14 (dB)

Some restoration results provided by these techniques are displayed in Fig. 1.
The original [512× 512] Elaine image is depicted in (a). Its version corrupted
with an amount of Gaussian noise given by µ = 0.04 and variance = 0.05,
is displayed in (b). The results produced by the [3 × 3] 2D filters, like 2D
Gaussian filter, Average and Median, are displayed in (c) – (e). The denoising
results produced by the PDE-based and variational methods are displayed in
(f) – Perona-Malik 1, (g) – Perona-Malik 2, (h) - TV Denoising, (i) – our
restoration technique. One can see that image (i), which is bounded by a blue
rectangle, represents the best enhancement result.

6 Conclusions

We have described a novel second-order nonlinear PDE-based restoration ap-
proach in this paper. The nonlinear anisotropic diffusion model proposed here
represents the major contribution of this work. It is obtained from a PDE
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Figure 1: Restoration results provided by several denoising models

variational scheme that is based on a novel regularizer function, which leads
to a robust edge-stopping function, properly constructed for an effective image
denoising.

The rigorous mathematical investigation of the obtained second-order pa-
rabolic PDE model, which is performed here, represents another contribution
of our article. We have mainly analyzed the well-posedness of the diffusion
model, demonstrating the existence of a unique and weak solution of it.

Next, a consistent and explicit numerical approximation scheme is con-
structed for the proposed second-order PDE model. We use the finite-difference
method to develop a fast-converging iterative discretization algorithm for the
differential model.

Our denoising scheme provides an effective detail-preserving image restora-
tion that is proved by our successful results and method comparison. It out-
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performs the two-dimension conventional filters, since it overcomes the image
blurring. Also, it performs better than many state-of-the-art second-order
nonlinear diffusion approaches, by executing faster and alleviating the stair-
case effect.

We will try to improve this diffusion-based restoration scheme, as part of
our future research in this domain, by modelling new edge-stopping functions.
Also we intend to further derive this nonlinear PDE model such that to obtain
higher-order PDE denoising schemes, like the fourth-order PDE approaches,
or hybrid smoothing models combining second-order and fourth-order PDE-
based schemes.
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